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Figure 1: Various examples of inpainting tasks and
datasets

Abstract

In this project, we aimed to explore probabilistic image
inpainting through a series of progressively challenging
goals categorized into Baseline, Medium, and Stretch
levels. Our work successfully achieved both the Base-
line and Medium goals, by implementing two mod-
els (PDE and LaMa) and on two different conditions
(masks and noise) and evaluated them on the met-
rics outlined in our proposals and looked for any bi-
ases, correlations, or disparities. We found out through
our experiments that both methods are fairly robust to
different initial conditions but the PDE based method
showed some bias in inpainting, specifically in images
with noise with resepect to MSE.

1 Introduction and Motivation

Image inpainting (inpainting) is generally defined as
any method that ”paints in” missing parts of the image.
These methods can range from simple pixel interpola-
tion methods to more complex deep learning methods
with probabilistic reasoning. No matter the method, the
end goal of inpainting is to reconstruct damaged, or de-
fective, portions of an image that ”looks” reasonable.
This is relevant and interesting in terms of the course

because both simple and complex inpainting meth-
ods like Convolutional Neural Networks (CNNs) Li
et al. [2021], Generative Adversarial Networks (GANs)
Goodfellow et al. [2020], and diffusion-based Ho et al.
[2020] methods all use some form of probabilistic meth-
ods to estimate a ”most probable” image/pixels of the
missing areas. These methods take into account either
the unmasked areas or a learned probabilistic distribu-
tion (conditional or unconditional) into account when
generating an inpainted image. As such inpainting is
an interesting problem because outside of an experi-
mental setting as there are no ”ground truths” to com-
pare the outputs to. This raises some interesting ques-
tions about how these models were trained and if there
are any hidden biases within the probabilistic reasoning
process of these models Jam et al. [2021]Lugmayr et al.
[2022]. This is important as these hidden biases could
result in biased and unfair sentencing as demonstrated
in the COMPAS recidivism risk-scoring model Dressel
and Farid [2018].

Our goal in this project was to perform inference on
some of these inpainting methods and interrogate them
with different initial conditions (masks and noise distri-
butions) to explore and evaluate any strengths, weak-
nesses, or biases that might be hidden in these models.
We did not train any models as training any generative
models would take a long time (diffusion models), are
notoriously difficult to balance (GANs), or would result
in poor quality (VAEs) without significant training and
testing. Our technical contributions include exploring:
1) the effect of different masks, 2) different initial noise
distributions and 3) seeing if there are any biases based
on protected attributes that may be seen in the inpaint-
ing models.

2 Background

Image inpainting, broadly speaking, can be thought of
as missing data imputation e.g. some statistical process
that replaces missing (pixel) values with estimated
(inpainted) values based on the available (non-masked)
information. The most basic method of imputation
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replaces missing values with some summary statistic
(generally mean or median). Essentially, inpainting can
be framed as a problem of estimating the conditional
probability distribution of the missing values given
the observed ones. Some more complex approaches
include k-nearest neighbors (KNN) and Gaussian
Mixture Models (GMMs) - essentially clustering or
more complex machine learning models that learn
the relationship between some latent noise to the
image through adversarial training (GANs), encoding
and decoding (VAEs), or noising and denoising steps
(diffusion).

3 Technical Contribution

For our project we tested two models: a PDE based
inpainting method, PyInpaint, and a residual learning
based inpainting method, LaMa on the CelebA dataset
with different initial conditions to see if there were any
interesting observations we could see from the types
of masks and noise conditions. While we would have
liked to train inpainting models that drew from differ-
ent latent noise distributions and compare their per-
formances, due to the time and resource constraints
we could not. These initial conditions include different
masks (line, triangle, circle, and rectangle) and different
noises applied to the initial images (Gaussian, gamma,
exponential, and uniform).

First we implemented the inpainting of random
masks. Each different mask was generated randomly
and applied to the image to get four different inpainted
images for the same original image. Then we applied
random noise equally to the images, applied the mask,
then inpainted them. We made sure to keep track of
the mapping between the original, noisy, mask, and
inpainted images so that at the end we could also
check the performance of our models on different la-
beled attributes in the CelebA dataset. To evaluate our
model outputs, we used both traditional image metrics
(Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index (SSIM), and Mean Squared Error (MSE)) as
well as more complex metrics of image quality (Frechet
Inception Distance (FID), Kernel Inception Distance
(KID), and Learned Perceptual Image Patch Similarity
(LPIPS)).

We evaluated the mentioned metrics for all of our
experiments with different initial conditions as well as
evaluating them based on the attributes of the images in
CelebA. We chose the attributes: Male, Young, and Pale
Skin as sex, age, and skin tone are attributes that are
not explicitly protected (attributes that should not be
discriminated against in the workplace or in our case,

Table 1: Overall results of PDE inpainting on different
masking shapes.

Line Triangle Circle Rectangle Overall
SSIM (↑) 0.988±0.023 0.94±0.055 0.950±0.041 0.888±0.083 0.942±0.066
MSE (↓) 24.201±261.036 193.603±388.112 184.201±343.411 511.232±746.100 228.458±504.760

PSNR (↑) 41.699±5.044 30.329±7.569 30.029±7.433 24.103±5.727 31.537±9.126
FID (↓) 13.917 29.962 21.985 49.792 23.890
KID (↓) 0.007±0.000 0.012±0.000 0.008±0.000 0.019±0.001 0.009±0.001

LPIPS (↓) 0.546±0.071 0.574±0.071 0.563±0.070 0.596±0.073 0.571±0.073

Table 2: Overall results of LaMa inpainting on different
masking shapes.

Line Triangle Circle Rectangle Overall
SSIM (↑) 0.998±0.002 0.962±0.041 0.968±0.030 0.917±0.076 0.961±0.054
MSE (↓) 1.615±1.768 78.481±121.809 80.259±131.882 243.890±420.338 101.061±245.025

PSNR (↑) 47.912±4.086 34.725±8.348 34.898±8.881 28.134±6.720 36.417±10.202
FID (↓) 1.49 3.131 2.988 6.009 2.014
KID (↓) 0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.001±0.000

LPIPS (↓) 0.558±0.069 0.559±0.071 0.559±0.069 0.566±0.071 0.560±0.072

model performance) but a close surrogate to them.

3.1 Results

The overall results of the PDE inpainting 1 and LaMa
inpainting 2 show that the both methods worked best
on line masks. This makes sense because line masks
have the thinnest and smallest area to fill and more
”known” pixels to estimate the missing values off of.
Conversely, we can see that the rectangle masks per-
formed the worst as it had the largest area to fill and the
least information for the estimation to work off of. This
can be seen in the selected samples of PDE and LaMa
inpainting in figures 2 and 7.

In the second series of experiments, where we added
noise to the input image, we can see that the both meth-
ods perform similarly to the non-noisy images as seen
in 3 and 4. It is interesting that the MSE actually im-
proves with the different noise added to the inputs,
which is in contrast to what we would expect since the
PDE method seems to interpolate the nearest pixel and
not add noise as seen in figure 2. This is in contrast to
the results of the noisy LaMa images where all metrics
perform poorer that might have to do with the Fourier
convolutions that LaMa uses. The FID, KID, and LPIPS
metrics all suffer when compared to the normal images
because they are metrics that are pretrained on natural
images without noise.

Table 3: Overall results of PDE inpainting different
masking shapes with added noise on the original im-
age.

Line Triangle Circle Rectangle Overall
SSIM (↑) 0.994±0.003 0.932±0.060 0.941±0.044 0.872±0.091 0.935±0.073
MSE (↓) 8.116±7.246 182.310±237.821 188.590±226.154 477.696±575.802 214.399±372.075

PSNR (↑) 39.676±2.223 29.066±6.117 29.043±6.480 23.663±4.711 30.356±7.772
FID (↓) 39.67 71.031 59.232 108.285 62.008
KID (↓) 0.012±0.002 0.022±0.003 0.018±0.002 0.043±0.007 0.021±0.002

LPIPS (↓) 0.720±0.084 0.757±0.089 0.750±0.086 0.787±0.089 0.756±0.099
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Table 4: Overall results of LaMa inpainting different
masking shapes with added noise on the original im-
age.

Line Triangle Circle Rectangle Overall
SSIM (↑) 0.991±0.004 0.928±0.063 0.938±0.044 0.862±0.104 0.930±0.079
MSE (↓) 11.444±5.945 149.311±182.372 139.465±157.483 374.033±495.354 168.563±304.792

PSNR (↑) 38.136±2.330 29.389±5.501 29.393±5.349 24.719±4.621 30.409±6.705
FID (↓) 2.795 6.414 5.148 12.726 4.457
KID (↓) 0.001±0.000 0.003±0.001 0.002±0.000 0.007±0.001 0.003±0.000

LPIPS (↓) 0.747±0.088 0.760±0.089 0.751±0.089 0.769±0.089 0.756±0.092

Table 5: PDE bias analysis

Shape Attribute SSIM (↑) MSE (↓) PSNR (↑)
Male/Female -0.005 0.430 0.006
Young/Old 0.004 -2.151 0.006Line

PaleSkin/DarkSkin -0.001 -2.360 0.014
Male/Female -0.006 0.101 -0.010
Young/Old 0.004 -0.126 0.007Triangle

PaleSkin/DarkSkin -0.009 0.202 -0.040
Male/Female -0.004 0.054 0.015
Young/Old 0.007 -0.263 0.003Circle

PaleSkin/DarkSkin 0.003 -0.139 0.025
Male/Female -0.004 0.082 -0.019
Young/Old 0.010 -0.075 0.020Rectangle

PaleSkin/DarkSkin 0.011 -0.126 -0.028
Male/Female -0.005 0.091 0.000
Young/Old 0.006 -0.161 0.008Overall

PaleSkin/DarkSkin 0.001 -0.058 -0.004

Table 6: LaMa bias analysis

Shape Attribute SSIM (↑) MSE (↓) PSNR (↑)
Male/Female 0.000 -0.068 0.007
Young/Old 0.000 0.060 -0.005Line

PaleSkin/DarkSkin 0.000 0.107 -0.003
Male/Female 0.000 0.029 0.001
Young/Old 0.003 -0.070 0.008Triangle

PaleSkin/DarkSkin 0.010 -0.269 0.038
Male/Female 0.004 -0.003 0.025
Young/Old -0.005 0.149 -0.036Circle

PaleSkin/DarkSkin -0.002 0.289 -0.036
Male/Female 0.003 0.029 -0.007
Young/Old -0.003 0.145 -0.008Rectangle

PaleSkin/DarkSkin 0.001 0.191 0.010
Male/Female 0.002 0.022 0.007
Young/Old -0.001 0.105 -0.010Overall

PaleSkin/DarkSkin 0.002 0.153 0.002

Table 7: PDE bias analysis with noisy images

Shape Attribute SSIM (↑) MSE (↓) PSNR (↑)
Male/Female 0.000 0.069 0.002
Young/Old 0.001 -0.267 0.012Line

PaleSkin/DarkSkin 0.002 -0.411 0.026
Male/Female 0.006 -0.036 0.029
Young/Old 0.016 -0.107 0.015Triangle

PaleSkin/DarkSkin 0.024 -1.063 0.043
Male/Female -0.009 0.098 -0.026
Young/Old 0.005 0.188 -0.032Circle

PaleSkin/DarkSkin 0.011 0.467 -0.100
Male/Female -0.015 0.187 -0.027
Young/Old 0.011 -0.200 0.001Rectangle

PaleSkin/DarkSkin -0.004 -0.037 -0.070
Male/Female -0.004 0.125 -0.004
Young/Old 0.008 -0.009 0.000Overall

PaleSkin/DarkSkin 0.008 0.050 -0.015

Table 8: LaMa bias analysis with noisy images

Shape Attribute SSIM (↑) MSE (↓) PSNR (↑)
Male/Female 0.000 -0.040 0.006
Young/Old 0.000 0.013 -0.001Line

PaleSkin/DarkSkin 0.000 -0.094 0.011
Male/Female -0.001 -0.009 0.002
Young/Old 0.005 -0.057 0.007Triangle

PaleSkin/DarkSkin 0.017 -0.250 0.044
Male/Female 0.004 -0.048 0.016
Young/Old -0.005 0.151 -0.022Circle

PaleSkin/DarkSkin -0.002 0.193 -0.016
Male/Female -0.003 0.015 -0.006
Young/Old -0.002 0.114 -0.006Rectangle

PaleSkin/DarkSkin 0.008 0.172 0.005
Male/Female 0.000 -0.004 0.005
Young/Old -0.001 0.084 -0.005Overall

PaleSkin/DarkSkin 0.006 0.105 0.012

In terms of bias, we can see that in 5 and 6 that both
methods do not have much bias at all, which makes
sense as a pixel-wise PDE inpainter will not have any
learned distribution outside of the image itself and ide-
ally a Fourier transformed model in the frequency do-
main won’t have bias as well. The MSE values in the
PDE bias tables show that the line images have the most
bias (bias being under 80 percent or over 120 percent
of the baseline) but this is most likely due to the nor-
malization applied to the images that brightened the
original darker image in these samples. However, with
noisy images, we can see in 3 that the PDE method has
more bias in MSE for the circle and rectangle masks
especially in the young/old category while the LaMa
method doesn’t increase bias at all. We also ran exper-
iments to see if there is any difference in performance
of all metrics based on the noise applied to the images
but saw that there was no significant difference between
the different noise (gaussian, gamma, uniform, expo-
nential) added.

4 Related Work

There are lots of related work that explores the potential
biases in generative networks. These papers conclude
that these off the shelf models are biased significantly,
especially on gender, race, and even facial expressions
Zhou et al. [2024]Currie et al. [2024]. Specifically, Zhou
et. al Zhou et al. [2024] tested Midjourney, Stable Diffu-
sion, and DALL·E 2 by asking it to generate images of
people with specific occupations and saw that there was
a large disparity in represented gender across all occu-
pations. Furthermore, they showed that there is a huge
bias in the represented race of people in these occupa-
tions, though interestingly Stable Diffusion seemed to
represent Asians more than white. However, as of writ-
ing this, there were no papers addressing any possible
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Figure 2: Various examples of inpainting tasks. The left
column shows the original image, PDE based inpainted
images in the middle column, and the LaMa based in-
painting on the right column.

biases specifically on inpainting methods and different
initial conditions in which the image is to be inpainted.
While we did not find any huge biases in our experi-
ments (perhaps because we didn’t get to use complex
enough models), it is not far-fetched to assume that the
biases in generative models will be present in inpaint-
ing models.

5 Conclusion

For our baseline goal, we started looking for multi-
ple models to work with and implement. We started
with PyInpaint, based on partial differential equations
(PDEs) in a graph framework. Its simplicity made
it an excellent starting point in understanding the
modifications and experimenting with different setups.
Then, we tried multiple GAN-based inpainting models
(region-wise-inpainting, generatitve-inpainting, plural-

Figure 3: Various examples of inpainting tasks with
noise. The left column shows the original image, PDE
based inpainted images in the middle column, and the
LaMa based inpainting on the right column.

istic image completation) but did not include them in
this project as it was difficult to modify for our initial
purposes without extensive modifications to the code
(though in hindsight, since we went with initial con-
ditions of the input image, these models could have
been implemented in our final experiments). Finally, we
tested the LaMa model in the simple-lama-inpainting
repository, which seeks to use Fourier convolutions for
resolution-robust inpainting of big masked areas. All of
these models had their own strengths and perspectives,
and thus an overarching framework for the evaluation
of different methodologies of image inpainting was de-
veloped.

Building on the baseline to achieve our medium
goals, we finalized on implementing two inpainting
models: PyInpaint (PDE) and LaMa. Selecting CelebA
as our image dataset, the images were first used as it
and then conditioned on different noise distributions,
including Gaussian, uniform, exponential, and gamma.
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We evaluated the outputs using reconstruction metrics
such as PSNR, SSIM, MSE, FID, KID, and LPIPS. This al-
lowed us to identify some correlations between specific
conditions (adding masks, noise, and both) and inpaint-
ing behavior, uncovering potential biases and depen-
dencies that merit further investigation. Unfortunately
due to resource and time constraints, we were unable to
complete the tasks outlined in the Stretch goals.

5.1 Limitations

Some limitations in our project were computational re-
sources and time. Although we had access to the SOL
cluster, since we didn’t train models and just imple-
mented and interrogated them, we chose to use Google
Collab resources. Due to the space in Google Collab
and time limitations (especially for running the PDE
method - it sometimes took over 10 seconds per im-
age based on the mask size) , we performed our exper-
iments on about 1% of the whole CelebA dataset. An-
other limitation came from not having enough time to
fully explore the model’s code. LaMa outputs generated
padded images of (224, 184, 3) vs the original CelebA
dataset’s size of (217,178,3) so initially the results of the
LaMa looked horrible with SSIMs in the range of 50%.
Once we cropped the image to the correct dimensions
(we assumed the padding of LaMa to pad to the bottom
and to the right - based on the observed artifacts), the
results made more sense and had values we expected.
However, if we had more time, maybe we could have
explored the padding and generated outputs without
padding for a strict comparison.

5.2 Future Work

In the future, we would aim to address the challenges
outlined in the Stretch goals. This includes implement-
ing additional inpainting models, such as GAN-based
methods like GAN-image-inpainting, and to train them
with different latent noise distributions to conduct a
more comprehensive comparative study. We would also
explore text-prompted inpainting to introduce seman-
tic guidance into the reconstruction process and inves-
tigate techniques to debias the outputs systematically.
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Figure 4: Comparison of the two models and their met-
rics on the original image.

Figure 5: Comparison of the two models and their met-
rics on the noisy image.

Figure 6: Comparison of the two models and their met-
rics on any potential bias on original images.

Figure 7: Comparison of the two models and their met-
rics on any potential bias on noisy images.
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