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ABSTRACT
Historically, crime prediction and hotspot detection have relied
on historical data and often fail to consider the socioeconomic
and environmental factors that affect crime occurrences everyday.
These elements are crucial to consider when predicting crime for
the improvement of public safety and increasing the allocation of
resources spent by law enforcement. In this study, we propose a
machine-learning based approach that will leverage both historical
data, demographic information, and urban features in order to pre-
dict future crime hotspots with better accuracy. Our methodology
will enhance the predictive performance by incorporating spatial
and temporal patterns into the model. The model is expected to
provide real-time intelligence for law enforcement agencies that
will improve overall crime prevention strategies and resource man-
agement.
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1 INTRODUCTION
Crime is a persistent issue everywhere, but especially in urban
environments. It affects the public safety, economic stability, and
law enforcement effectiveness wherever it takes place. Having the
ability to predict and prevent criminal activities is a necessity for
any location looking to increase public safety and optimize its local
resources. Unfortunately, traditional crime maps and forecasting
methodologies rely primarily on historical crime records, which fail
to take into account the intertwined socioeconomic, environmental,
and infrastructural elements that heavily influence these crime
trends. These old methods rely on static data and analyzing the
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past, which limits their ability to adapt proactively to current trends
and find prevention strategies.

One of the key challenges that is faced in predicting crime is the
fact that criminal activity is dynamic and changes wherever you go.
The patterns fluctuate based on many factors related to the location,
including population density, economic conditions, presence of
law enforcement, and even seasons. Due to these complexities,
law enforcement agencies may struggle to deploy their resources
effectively, either having too many or too little in areas that may
need more or less police presence. Another challenge lies in the
operational constraints faced by law enforcement agencies, which
must often make decisions based on limited or delayed information.
Real-time responsiveness is difficult when existing systems lack
the infrastructure to process and adapt to rapidly changing crime
conditions.

The recent rapid growth in machine learning (ML) and data
analysis offer new possibilities in the crime prevention and predic-
tion world. With the ability to integrate multiple data sources that
take into account the history, demographics, and infrastructure, ML
models have the ability to uncover new patterns and relationships
that the static models used in the past may have missed. These
developed models can adapt more-easily to the changing crime
flow and allow for more precision when predicting what may be a
hotspot location and time.

In this project, we propose a powerful combination of techniques
such as Spatiotemporal Transformer and Graph Neural Network to
maximize crime detection that will adjust in real-time and provide
more accurate results than any static model from the past. This
dynamic approach as well as diverse datasets used will help to en-
hance the predictive performance of the model and produce higher
accuracy in identifying crime hotspots than traditional methods.
By combining structural spatial relationships with fine-grained
temporal patterns, our approach offers a more holistic view of
crime dynamics that adapts to change rather than relying on static
assumptions. This allows us to not only identify where crime is
concentrated, but also uncover how it shifts across time and space.
Through this lens, we aim to support smarter, data-informed public
safety strategies that are responsive to the complexities of urban
environments.

2 RELATEDWORK
There have been several studies that recently have explored the use
of machine learning for predicting and preventing crime, which all
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propose different techniques with the aim of improving accuracy
of the models. In [1], Ahmad et al. introduced CHART, which is
an intelligent crime hotspot detection and tracking system that
highlights the advantages of real-time data processing to improve
law enforcement responses.

The focus of CHART is data collection, preprocessing, feature
extraction, then prediction. The experimental evaluation illustrated
that CHART’s performance was significantly higher than bench-
mark methods, and when compared with well-known machine
learning algorithms such as Naive Bayes, Support Vector Machine,
K-Nearest Neighbors, etc., the accuracy, precision, and recall scores
were quite telling. CHART’s model scored a 95.65% accuracy score,
and the next highest was SVM with an 88.47%, with the same pat-
tern following in precision and recall values. These results illustrate
the model’s ability to dynamically learn from the crime data, finding
hidden patterns.

Kounadi et al. [3] conducted a systematic review on spatial crime
forecasting techniques, which emphasized the strengths and weak-
nesses of a range of different methods that included both traditional
static approaches as well as the more modern machine learning
techniques. Their study went through and categorized the predic-
tion models, separating them by type into spatial, temporal, and a
combination of both. The results found that the traditional models
such as regression analysis are easier to interpret, but they cannot
actually comprehend the full complexity of the data that the ma-
chine learning models see. The main finding of this research was
that in order to maximize the accuracy of crime data prediction,
there needs to be a hybrid model that incorporates both statistical
and machine learning techniques.

Another interesting study in this space is by Bogomolov et al.,
who explored howmobile phone usage data could help predict crime
hotspots. Instead of just relying on past crime records, their model
used anonymous mobile metadata like call activity and mobility
patterns to understand how people move and interact in a city.
This approach provided additional context about areas with high
activity or unusual behavior patterns, which turned out to be useful
indicators for predicting potential crime. Their results showed that
combining behavioral data with historical crime stats gave much
better predictions than using crime data alone, which really shows
the value of integrating different kinds of data [2].

There’s also been a lot of progress using deep learning for this
type of work. For example, Wang et al. treated crime data as if it
were image data by mapping crime occurrences onto a city grid and
then applying Convolutional Neural Networks (CNNs). This let the
model learn complex spatial patterns that might not be obvious with
traditional methods. They even included factors like weather and
special events to help account for changes over time [5]. Building on
that, Zheng et al. introduced ST-ResNet, a model that captures both
spatial and temporal trends using deep residual networks [6]. These
newer approaches show how powerful spatiotemporal models can
be for crime prediction, and they support the direction our project
is taking with transformers and graph-based learning.

Our research builds off of these prior studies by looking to work
on an existing machine learning model and incorporate techniques
such as RTM and KDE to leverage the strengths of each and en-
hance our crime prediction accuracy. This approach we’ve chosen
will dynamically weigh the influence of new factors in real-time

which will be a powerful advancement in crime analysis for hotspot
detection and predictions.

3 DATASET
3.1 Dataset
The crime dataset of the Phoenix Police Department constitutes a
rich, public, domain-specific resource made available through the
Phoenix Open Data Portal. It contains information on the types of
crimes, the places where incidents occurred (ZIP code), and dates
and times of occurrence, detailing every reported crime incident in
the city. The richly spatiotemporal nature of these data renders them
ideal for advanced crime pattern analysis and hotspot detection.

3.2 Data Processing
The primary objective is to identify crime hotspots and understand
the patterns contributing to increased crime rates in specific areas.
We have successfully completed the extraction and formatting of
key features, ensuring that our dataset is comprehensive and ready
for further analytical tasks.

The dataset has a record of 583,543 rows and spans across eight
columns namely INC NUMBER, OCCURRED ON, OCCURRED TO,
UCR CRIME CATEGORY, 100 BLOCK ADDR, ZIP, PREMISE TYPE,
and GRID. After going through the dataset we learned that most of
the values are non-null values. With some missing entries mostly
in the OCCURRED TO, ZIP, PREMISE TYPE, and GRID columns.
However, they represent only a small part of the data, which is very
comprehensive and apt for our project’s analytical objectives.

First, we parsed the column "OCCURRED ON" and "OCCURRED
TO" into datetime objects, which, in turn, allows for the derivation
of temporal features, including the day of the week, month, year,
and hour-all of the aforementioned being the critical dimensions
for pattern recognition at different timescales. We then used the
"UCR CRIME CATEGORY" field, standardizing crime types (9 types
of crime) for consistent classification that supports both categorical
analysis and predictive modeling.

Missing values are addressed through context-appropriate tech-
niques including forward-fill, backward-fill, and imputation based
on spatial or categorical relationships. Data transformation includes
encoding categorical features for machine learning compatibility
and scaling numerical features for uniformity. This systematic pro-
cessing creates a structured dataset with rich spatiotemporal dimen-
sions, enabling both traditional statistical approaches and advanced
deep learning techniques to identify crime patterns and predict
future hotspots.

By implementing Spatiotemporal Transformer or Graph Neural
Network approaches for hotspot detection, we are advancing tech-
niques that surpass traditional statistical methods. The integration
of LSTM forecasting adds predictive capabilities that transform this
from a descriptive analysis into a proactive crime prevention tool
with public safety implications. Our approach is innovative with
integration of geographic information systems with state-of-the-art
deep learning architectures, enabling law enforcement agencies to
optimize resource allocation based on comprehensive spatiotempo-
ral patterns rather than isolated incidents. The real-world impact
of this work extends beyond academic interest as it provides intelli-
gence that could directly contribute to crime reduction strategies,



potentially saving lives and improving community safety across
Phoenix. As we move forward with implementation, this project
stands at the intersection of data science, criminology, and public
policy, demonstrating how advanced computational methods can
address pressing societal challenges.

3.3 Spatial and Geospatial Feature Engineering
A critical advancement in our data pipeline is the incorporation
of geospatial analysis techniques to capture the spatial relation-
ships between crime occurrences and urban infrastructure. Unlike
traditional approaches that rely solely on ZIP codes as categorical
inputs, we utilize geographic coordinates, shapefiles, and adjacency
matrices to generate meaningful spatial features. These include
calculating ZIP code centroids, distances to high-risk facilities, and
graph-based adjacency scores. This geographic enrichment enables
our model to recognize neighborhood-level risk spillovers and is
essential for the success of spatial deep learning models like Graph
Neural Networks (GNNs).

To further enhance spatial insight, we employ visualization tech-
niques inspired by our preliminary work on Los Angeles crime
data[4]. Using Folium and heatmap overlays, we plan to map out
Phoenix crime intensities dynamically over time. This example can
be shown in Figure 1. This visual exploration not only helps validate
the integrity of the dataset but also allows us to spot emerging crime
patterns, assess the effects of temporal events, and identify spatial
autocorrelation. Such mapping makes the results interpretable to
stakeholders like city planners or police departments who might
not be familiar with ML outputs.

This spatial feature engineering represents a novel approach
compared to static models used in previous crime prediction studies.
Traditional models often ignore how urban design and adjacency
influence crime rates. By constructing a graph of neighborhood rela-
tionships and incorporating land-use features from OpenStreetMap,
we go beyond basic crime count data. Our hybrid spatial model
dynamically learns not just where crime occurred, but why it might
be happening there, thus, opening the door for more actionable
urban interventions.

3.4 Temporal Dynamics, Aggregation, and Data
Quality

In addition to spatial features, we also derive a range of temporal
attributes from the Phoenix crime dataset, including the hour of
the day, day of the week, month, and season. These cyclical time
features are critical for capturing patterns in criminal behavior,
which often peaks during weekends, holidays, or certain seasons.
Parsing the proper fields into datetime objects allows us to embed
this temporal variability directly into the model. Furthermore, we
plan to explore lag variables and moving averages to better capture
short-term trends that may influence crime surges.

To ensure robustness, we have implemented a multi-step data
cleaning strategy. Missing ZIP codes and premise types are re-
solved using contextual imputation based on nearby entries and
statistical frequencies. For datetime gaps, we utilize forward and
backward fill methods, prioritizing preservation of temporal order.
This level of preprocessing ensures that our model isn’t biased by
incomplete records while retaining the high resolution needed for

real-time predictions. It also prepares the dataset for machine learn-
ing algorithms that are sensitive to missing or inconsistent data
formats. What makes this temporal modeling approach innovative
is the combination of high-frequency timestamped crime data with
long-term spatial context. Most prior studies analyze crime at the
monthly or yearly level, which lacks the granularity required for
real-time hotspot detection. Our integration of LSTM forecasting,
in conjunction with a spatiotemporal transformer or GNN back-
bone, allows us to model crime as a dynamic process unfolding over
both time and space. This temporal-spatial synergy is a cutting-
edge contribution to crime analytics and sets our work apart from
traditional regression or static hotspot mapping techniques.

Figure 1: figure-1

4 METHODS
The study proposes a hybrid spatiotemporal framework for crime
hotspot prediction, combining geographic granularity with tempo-
ral dynamics. At its core, the methodology transforms raw crime
reports (ZIP codes, timestamps, and crime counts) into an enriched
feature space capturing both cyclical temporal patterns (day-of-
week, seasonal trends) and spatial relationships (ZIP-code centroids,
inter-region adjacency). This approach enables law enforcement
agencies to better allocate resources by identifying high-risk areas
based on historical patterns and geographic relationships.

4.1 Data Processing and Feature Engineering
The initial dataset consisted of more than 43 million records in
mixed-up formats, with lots of missing values and duplicates. The
ZIP code was standardized into a 5-digit format with erasure of
invalid entries, hence preserving geographic consistency in the
dataset. The time-related data were cleaned very carefully by re-
moving certain timestamps with missing or badly malformed data,
after which all dates were converted to perfectly structured format-
ting for analysis. We enriched the dataset by adding very crucial
time features like day of week, month, year, and weekend flags
so that we could characterize the crime occurrence cycle. Finally,
the data were aggregated by ZIP code and date to obtain daily
counts, resulting in a clean dataset ready for advanced analysis
that is time-aware. This was an important processing step done
towards dealing with the unique instances presented in the dataset,
including the incident identification system where the first 4 digits



represent the year of reporting and incidents with "8" after the
year digits indicating citizen-reported crimes. Whereas the dataset
uses federal Uniform Crime Reporting (UCR) categories instead of
state-specific statutes in Arizona, it allows standardized comparison
against national crime data.

4.2 Hotspot Labeling Using Quantile
Thresholding

Following the feature engineering stage, we developed a dynamic
approach for labeling ZIP codes as hotspots or non-hotspots based
on historical crime intensities. Specifically, the average daily crime
count was computed for each ZIP code across the available time
period. Instead of employing a static threshold, we used a 55th
percentile threshold to differentiate between high- and low-risk
regions. This method accounts for evolving crime patterns over time
and avoids rigid, hard-coded definitions that might not generalize
across different urban contexts.

Formally, a ZIP code 𝑣𝑖 was labeled as a hotspot (assigned label 1)
if its average crime count exceeded the 55th percentile value across
all ZIP codes, and as a non-hotspot (assigned label 0) otherwise:

Label(𝑣𝑖 ) =
{
1, if AvgCrime(𝑣𝑖 ) > Percentile55
0, otherwise

This labeling strategy introduces robustness into the classification
framework by flexibly adapting to the natural distribution of crime
incidents, rather than relying on arbitrary thresholds. It ensures
that the model focuses on relative risk within the city at any given
time, thereby improving hotspot prediction relevance and fairness.

4.3 Graph Construction and Spatial
Representation

We modeled the spatial dimension such that it becomes a graph
network to better show how crime patterns propagate through
urban environments. Each ZIP code (117 total) is a node in the
graph, capitalizing on the quarter-square-mile grid units organi-
zation of the city. Between nodes, connections are made using
k-nearest neighbors (k=5) based on Haversine distance calculations,
which accurately reflect geographic proximity. We selected kNN
over distance thresholds because it guarantees uniform connectiv-
ity across the network and prevents isolated nodes in low-density
areas, ensuring all regions remain connected regardless of popu-
lation distribution. What is created turns out to be a spatial graph
that mimics how crime patterns spread through a city’s connected
regions. Crime does not respect political boundaries, but it tends
to be influenced by, and in turn, affect neighboring areas. This
matches the way the data is organized spatially, with the city di-
vided into quarter-square-mile grid units with edges along major
streets, making spatial crime analysis and hotspot identification
possible.

Figure 2: Graph Connectivity Between ZIP Codes Based on k-Nearest
Neighbors

4.4 Graph Neural Network (GNN) Architecture
A Graph Convolutional Network (GCN) architecture is built and
implemented that learns the spatial crime patterns using various
specialized layers designed to capture local and neighborhood level
messages together. The first layer, defined by GCNConv with an
input dimension to 32 nodes fetches information from the close-
by ZIP codes, primarily captures local crime activity and adjacent
patterns which might create impact into a region. Apart from this,
following the first aggregation, there comes batch normalization
and the ReLU activation functions, sought for either stable and
efficient learning or introducing non-linearity in the model. The
second convolutional layer is GCNConv 32-to-32, aiming at fur-
ther extending modeling’s ability to recognize patterns of multiple
connected neighborhoods, enabling it to identify crime trends that
span larger geographic areas. To avoid overfitting in the training
data, we have adropout layer at a rate of 0.3, which makes the
model learn generalized representations. It has a final linear layer
that produces a binary prediction to mark areas as potential future
crime hotspots (1) or not (0). Therefore, it comes towards balancing
spatial awareness together with learning complex patterns from
historical crime data to predict the areas with increased risk. The
forward pass of the network can be summarized as:

H(1) = ReLU (BN (GCNConv1 (X,A)))

H(2) = ReLU
(
BN

(
GCNConv2 (H(1) ,A)

))
ŷ = 𝜎

(
WH(2) + b

)
where A is the graph adjacency matrix, and ŷ is the predicted logit
for each node. The architecture is summaries in the figure 3.



Figure 3: Architecture of the GCN Model for Hotspot Classification

4.5 Training and Optimization
The model was trained with particular emphasis upon class imbal-
ances and generalization for reliable performance in every region,
that is, class distribution variations across the many regions in
which a model might operate. We applied the BCEWithLogitsLoss
weight to counter the most general form of class imbalance re-
garding the inherent imbalance between hotspot and non-hotspot
classes, ensuring our model did not trivially predict the majority
class. The Adam optimizer with a learning rate of 0.01 was used,
chosen for its adaptive convergence properties to handle efficiently
the highly non-convex loss landscape of graph-based models. The
data was split as strategically as possible in an 80/20 training-testing
ratio across ZIP nodes to allow the model to generalize effectively
into unseen areas rather than insane patterns coming from training
locations. The training process continued over 1000 epochs with
observations made for convergence and future overfitting, thus al-
lowing us to learn very complex spatial relationships while meeting
generalization requirements.

Figure 4: Training Loss Curve Over Epochs Showing Model Convergence

5 RESULTS
The implementation of our graph-based crime prediction frame-
work demonstrates the potential of using Graph Neural Networks
(GNNs) for identifying crime hotspots in urban environments. By
representing ZIP codes as nodes in a graph connected via geograph-
ical proximity, our model effectively captures how crime patterns
spread through interconnected urban areas.

In contrast to previous approaches, this method effectively trans-
lates the conventional prediction of crime into a problem of graph
learning, where the impacts of nearby regions become modeled
by means of graph convolutions. With this spatial awareness, it

surpasses the previous methods that regarded these sites as inde-
pendent entities. The resulting graph using k-nearest neighbors
(k=5) on Haversine distance maintained a seamless connectivity
throughout the network and truly reflected the real ground rela-
tionships.

The GCN architecture, with its multiple convolutional layers
and regularization through dropout, demonstrates the ability to
learn both local crime patterns and broader spatial relationships.
The training process effectively addresses the challenge of class
imbalance through weighted loss functions, an important consider-
ation given the relative rarity of true crime hotspots compared to
non-hotspot areas. Added to these spatial interrelations, temporal
features (like day of week, month, year, and weekend flags) allow
capturing not only geographically defined but also time-limited
crime patterns, providing a more complete view on risk factors.
This methodology detects certain areas that would be missed by
traditional systems as they almost solely rely on past crime counts,
leaving out neighborhood influence.

While specific performance metrics from complete model de-
ployment are still being collected, this constitutes the initiation of
a foundation for more complex crime prediction systems using the
web of interconnections among urban environments. More promis-
ingly, the framework would support law enforcement agencies in
much-improved resource-allocation and proactive policing strate-
gies that rely on data-driven insights about novel crime patterns
across interlocked urban spaces.

Figure 5: Geographic Visualization of Predicted Hotspot Probabilities



Figure 6: Confusion Matrix

6 DISCUSSION
Our results demonstrate that crime prediction is most effective
when spatial and temporal dimensions are modeled together. By
using Graph Neural Networks on a spatially connected ZIP code
graph and integrating temporal patterns such as weekday and
seasonal trends, our model was able to identify crime hotspots with
improved accuracy over traditional methods.

6.1 Model Strengths and Contributions
The results of our framework show the effectiveness of Graph
Neural Networks (GNNs) for urban crime hotspot prediction. Our
spatial modeling approach transforms ZIP code regions into nodes
in a graph, enabling the model to capture how crime patterns prop-
agate across neighborhoods. The k-nearest neighbors (k=5) graph
structure ensures that even low-density ZIP codes maintain rele-
vant connections, overcoming a common limitation in traditional
hotspot mapping methods. Additionally, the model’s integration of
temporal features—such as day of the week, month, and weekend
indicators—proved essential in identifying not just where, but also
when crime is more likely to occur. This spatiotemporal fusion gave
the model a richer understanding of criminal behavior patterns,
which is reflected in its ability to detect areas that static models
often miss.

6.2 Limitations and Areas for Improvement
Despite the model’s overall success, several limitations remain.
One issue is class imbalance—hotspots represent a minority of
the dataset, and even with weighted loss functions and dropout,
the model shows less consistency in predicting borderline regions.
These are areas close to the defined hotspot threshold but with
fluctuating crime counts over time, and they present challenges in
classification stability. Another limitation is the uniform weighting
of connections between ZIP codes in the spatial graph. Currently,
our graph assumes equal influence across all neighbors. Introducing

weighted edges based on real-world contextual factors could allow
the model to capture these subtleties.

6.3 Future Work and Extensions
To further improve prediction quality, we propose experimenting
with spatiotemporal transformers, which have the capacity to learn
longer-range temporal dependencies and handle irregular patterns
in time-series data. Additionally, incorporating more external fea-
tures—such as socioeconomic indicators, infrastructure attributes
from OpenStreetMap, or real-time data streams like 911 or 311
calls—would give the model a deeper understanding of why crime
occurs in specific locations. We also see value in enhancing the spa-
tial resolution by shifting from ZIP code-level data to finer-grained
units such as census blocks or lat-long clusters, which could enable
even more precise risk assessments. Lastly, conducting longitudinal
validation over multiple years would provide stronger evidence for
the model’s generalization in changing urban environments.

7 CONCLUSION
During this project, our team presented a new and improved graph-
based approach to crime hotspot prediction that works to integrate
both spatial and temporal dimensions using Graph Neural Net-
works. By using ZIP codes as nodes and their geographical rela-
tionships as edges, our model captures the underlying structure of
urban environments and how crime patterns move through them.
By including the temporal factors rather than solely spatial ones,
our model is better able to detect and predict patterns that vary not
just by place, but by time as well.

Our results demonstrate that using spatiotemporal modeling
significantly enhances prediction accuracy when compared to the
older crime modeling methods. Those traditional approaches treat
areas in isolation, and our model focuses on connecting areas and
treating them as a whole. Our approach is capable of identifying
previously overlooked hotspot areas by leveraging the relational
context of surrounding spaces and neighborhoods.

While limitations still exist, such as class imbalance and uniform
edge weighting, the foundation that we laid down in our framework
paves the way for several promising paths for future work. Not
only can our model be improved with new features, but the way it
was built makes it very scalable and it can easily be employed to
expand across multiple cities.

Overall, this project focuses on the potential of data-driven,
context-aware crime prediction tools. These elements support a
more proactive and efficient approach to creating effective public
safety strategies. By bridging the gap between spatial analysis with
machine learning, we aim to help empower law enforcement agen-
cies with actionable insights that go beyong the static historical
trends, helping them respond to and prevent crime in smarter, more
informed ways.
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