
TIC-TAC-TOE GAME(GROUP 9) 1

CSE535: Tic-Tac-Toe Game
Group 9: WeiSheng Chiu, Dipanshu Singh, Ujjwal Baranwal, Aashritha Machiraju, Geeth Nischal Gottimukkala,

Devansh Tomar

Abstract—This report outlines the design and development
of a Tic-Tac-Toe mobile application, built using Kotlin and
Jetpack Compose, aimed at enhancing both user experience and
gameplay intelligence. The game features three difficulty levels:
Easy, Medium, and Hard. In Easy mode, the AI makes random
moves to provide a relaxed experience, while Medium mode
introduces a mix of random and optimized moves for balanced
gameplay. The Hard mode employs the Minimax algorithm with
alpha-beta pruning, delivering a highly challenging experience.
The application boasts a clean, intuitive user interface and
integrates key features such as game reset, winner detection,
and persistent storage for tracking game history and player
statistics. This report delves into the app’s architecture, the AI’s
algorithmic strategies, and user experience design, demonstrating
how modern mobile development can elevate a classic game.

Index Terms—Android Development, Game Development, Mo-
bile Game Development

I. INTRODUCTION

Tic-Tac-Toe has long been a popular game due to its
simplicity and strategic depth. In today’s mobile-centric world,
traditional games can be revitalized with advanced algorithms
and intuitive interfaces to offer more engaging experiences.
This project focuses on developing a Tic-Tac-Toe game for
Android devices using Kotlin and Jetpack Compose, enhancing
the classic game with modern AI and design principles.

The primary goal of this application is to deliver an en-
joyable and challenging gameplay experience through three
difficulty modes. Easy mode provides casual players with an
AI that makes random moves, while Hard mode introduces a
highly competitive AI that uses the Minimax algorithm with
alpha-beta pruning to make optimal moves. Medium mode
offers a balanced challenge by combining random and strategic
moves, making it suitable for players seeking a moderate
challenge.

Key features of the application include a responsive, dy-
namic game board, real-time move validation, a reset option,
and persistent data storage to track game results, difficulty
levels, and player performance. By integrating cutting-edge
mobile development technologies like Jetpack Compose for
UI design and SQLite/Room Database for persistent storage,
the app ensures a seamless user experience. This project
showcases how a classic game can be enhanced with modern
development techniques, providing both nostalgia and innova-
tion in one package.

II. TECHNICAL APPROACH

In this Tic-Tac-Toe implementation, the game features mul-
tiple difficulty levels where the AI moves are determined
by the complexity of the algorithm. The ”Hard” mode uses
the Minimax algorithm with alpha-beta pruning to calculate

optimal moves.
The AI uses the Minimax algorithm, enhanced with alpha-beta
pruning, to make optimal moves by evaluating potential board
states and simulating both its own and the player’s responses.
The goal is to maximize its advantage by selecting the best
possible move to win or force a draw, while minimizing
the player’s chances of success. Alpha-beta pruning improves
efficiency by skipping over board states that won’t affect the
final outcome, reducing the number of moves the AI needs
to evaluate. The game’s difficulty levels—Easy, Medium, and
Hard—determine how the AI makes decisions, with Hard
mode using optimal Minimax moves, Easy mode relying on
randomness, and Medium mode blending both approaches.
This combination allows the AI to provide a challenging and
efficient gameplay experience.

A. Minimax Algorithm

The Minimax algorithm is a decision-making algorithm
used for two-player games like Tic-Tac-Toe, where one player
maximizes their score while the other player minimizes it. It
assumes that both players play optimally, with the maximizing
player, AI in this case, trying to get the highest score and the
other the minimizing player, human player trying to minimize
the opponent’s score. In context of this game the Minimax
algorithm helps determine the best move for the AI (player
”O”) by evaluating all possibe future board configurations and
selecting the move that maximizes its chances of winning. The
AI assumes that the human player will always make the best
possible move to counter it.
The algorithm works by recursively simulating all potential
moves from both the current player and the opponent, and
then calculating a score for each possible board state. The
score represents the desirability of that board state, with a
higher score indicating a more favorable outcome for the AI
and a lower score representing a better outcome for the player.
The algorithm then selects the move that leads to the best
score from the AI’s perspective. The recursive structure of
the algorithm explores all potential moves until it reaches a
terminal state, where either a win, loss, or draw is determined.

• +10 if the AI wins
• -10 if the player wins
• 0 for a draw
From these terminal states, the algorithm backtracks and

evaluates each move by comparing the outcomes. For the
AI’s turn, the algorithm chooses the move with the highest
score, while for the player’s turn, it chooses the move with the
lowest score. By doing this recursively, the algorithm identifies
the optimal strategy for the AI, effectively ”thinking ahead”
several steps into the game.

TIC-TAC-TOE GAME(GROUP 9) 2

Fig. 1. Minimax visualization [Fox21]

Fig. 2. Shows the screens of the application. On the left is the settings screen.
In the middle is the game screen. On the right is the past game screen.

B. Alpha-Beta Pruning

Alpha-beta pruning is an optimization technique used in
conjunction with the Minimax algorithm to reduce the number
of nodes that need to be evaluated. Without alpha-beta pruning,
the Minimax algorithm explores all possible moves and future
game states, leading to high computational costs, especially
as the depth of the game tree increases. Alpha-beta pruning
significantly improves the efficiency of the Minimax algorithm
by eliminating the need to explore branches of the game tree
that cannot possibly influence the final decision. The main
idea behind alpha-beta pruning is to keep track of two values,
alpha and beta, which represent the best possible scores that
the maximizer and minimizer can respectively achieve.

III. DESIGN CHOICE

In this game application, there are three pages: The game
screen, the settings screen, and the past game screen. Fig. 2
shows the screen virtually. When the user opens the game
application, the settings screen lists the game mode, easy,
medium, hard, and human. In addition to the game mode, the
past game choice lets the user see the results of old games.
This UI design gives the user a straightforward way to start
a game on this screen. The game mode button is distributed
vertically, so the small-screen phone could have a similar user
experience.

After the user selects a mode, he/she will be led to the game
screen. The game starts when the user takes a move on the
game board. During the game, the user could press the back
button on the left-top of the screen to go back to the settings
screen and change the game mode. The game board is set on
the middle part of the screen. There is no other thing lying
above or below the game board. Therefore, the user could pay
more attention to the game. Since the user can only select
the game mode in the settings screen, there are fewer choices
that the user needs to make on the game screen. This design
strategy could give the user a stressless environment.

In the past game screen, it lists the records with a card.
Each card represents an old game. The card starts with the
game details: the time and the mode. The tail of the card
shows the result of the game. There are three possible results:
win, lose, and draw. We use font colors to distinguish those
results visually. The winning game uses a gold color. This
gives the user a happy emotion, just like winning the Olympic
gold medal. The losing game uses a red color. This gives the
user a nervous emotion, so they would be stimulated by their
winning ambition. The stone color is set to display the drawing
game. This would not provide any emotion when the user sees
it, just like the meaning of the draw game.

We keep our design language the same on each screen. We
chose an image that contains many lines as our background.
This image looks simple and echoes the game since the tic-tac-
toe is to occupy the cells to make a line. However, the dense
lines make it hard for the user to distinguish the background
and the content visually, so we package the content with a
gray box. Except for the settings screen, the distribution of
the elements is similar in the other two screens. The title and
the back button are on the top of the screen, and the content
is in the middle of the rest of the space. This unification eases
the user from learning how to use the application since they
only need to learn it once rather than learn a new control
method for each screen. Since the phone screen is not like the
computer screen, most of the elements are aligned in a vertical
way.

IV. IMPLICATIONS AND CHALLENGES

In this project, the implications are closely tied to the
knowledge gained and the technical skills developed. This
project helped us deepen our understanding of mobile app
development, particularly in using and utilizing different com-
ponents of Android Studio in order to successfully build apps
and games alike. We also developed an in-depth understanding
of UI elements and backend AI elements through Jetpack
Compose and implemented Minimax with alpha-beta pruning
algorithms. Working with the Minimax algorithm, enhanced by
alpha-beta pruning, gave us firsthand experience in optimiza-
tion and decision-making processes in games. Additionally,
the project highlighted the importance of creating efficient
and user-friendly interfaces in mobile development. We also
gained insights into how AI adapts to different difficulty levels,
allowing for both random and optimal moves, which made
the game more engaging and challenging for users. Lastly,
using GitHub enhanced our understanding of collaborative

TIC-TAC-TOE GAME(GROUP 9) 3

development, making version control and teamwork more
efficient and organized.

However, our group faced several challenges throughout the
project. One of the primary difficulties was the implementation
of the Minimax algorithm with alpha-beta pruning, as bal-
ancing computational efficiency with game performance was
tricky. This algorithm, although theoretically sound, required
extensive debugging and testing to ensure that it worked
correctly within the limited resources of mobile devices.
Additionally, the need to implement the AI across varying
difficulty levels (easy, medium, and hard) added complexity,
especially in maintaining the fluidity of gameplay. Another
challenge we faced was the integration of Jetpack Compose
for the UI elements, especially since it was our first time
working extensively with this framework. Designing a respon-
sive and visually appealing interface while maintaining game
functionality required a steep learning curve. Implementing
a tiled repeated background added complexity, as we had
to ensure that the background rendered correctly on various
screen sizes without affecting the performance of the game.
Additionally, time management and task delegation among
group members were essential but often difficult to coordinate,
especially when contributions varied in scope. Despite dividing
tasks, some aspects of the project, such as debugging and fine-
tuning the UI, required more collective effort than anticipated.
These challenges, though demanding, ultimately taught us
valuable lessons in teamwork, troubleshooting, and mobile
development, which will benefit us in future endeavors.

V. LINKS

1) YouTube Video (Unlisted): CSE535 F24 Project 2: Tic-
Tac-Toe (Group-9)

2) GitHub Repository (Private): Tic-Tac-Toe
3) Team Effectiveness Report: Team Effectiveness Report

REFERENCES

[Fox21] Jason Fox. Tic Tac Toe: Understanding the Minimax
Algorithm — Never Stop Building - Crafting Wood
with Japanese Techniques. Nov. 10, 2021. URL:
https://www.neverstopbuilding.com/blog/minimax.

https://youtu.be/jmAWgcs_JWI
https://youtu.be/jmAWgcs_JWI
https://github.com/PipKcK/Tic-Tac-Toe
https://arizonastateu-my.sharepoint.com/:w:/g/personal/wchiu6_sundevils_asu_edu/Ea-S30jiPPtNoKU2RRn1GnoB8RlwjGg0oP5dkKw4FU4sHw?e=QsgMms
https://www.neverstopbuilding.com/blog/minimax

 Team Effectiveness Report

Name ASU ID ASU Email Address Contribution rate (%)
WeiSheng Chiu 1229560763 wchiu6@asu.edu 16.66%
Ujjwal Baranwal 1220406356 ubaranwa@asu.edu 16.66%
Dipanshu Singh 1220267958 dsingh47@asu.edu 16.66%
Aashritha
Machiraju

1220510330 Amachira@asu.edu 16.66%

Geeth Nischal
Gottimukkala

1219532899 ggottimu@asu.edu 16.66%

Devansh Tomar 1220103989 dtomar1@asu.edu 16.66%

WeiSheng’s Signature:

Ujjwal’s Signature:

Devansh’s Signature:

Dipanshu Signature:

Aashritha’s Signature

Geeth’s Signature:

	Introduction
	Technical Approach
	Minimax Algorithm
	Alpha-Beta Pruning

	Design Choice
	Implications and Challenges
	Links

